Deep Semantic Face Deblurring
نویسندگان
چکیده
In this paper, we present an effective and efficient face deblurring algorithm by exploiting semantic cues via deep convolutional neural networks (CNNs). As face images are highly structured and share several key semantic components (e.g., eyes and mouths), the semantic information of a face provides a strong prior for restoration. As such, we propose to incorporate global semantic priors as input and impose local structure losses to regularize the output within a multi-scale deep CNN. We train the network with perceptual and adversarial losses to generate photo-realistic results and develop an incremental training strategy to handle random blur kernels in the wild. Quantitative and qualitative evaluations demonstrate that the proposed face deblurring algorithm restores sharp images with more facial details and performs favorably against state-of-the-art methods in terms of restoration quality, face recognition and execution speed.
منابع مشابه
DeepDeblur: Fast one-step blurry face images restoration
We propose a very fast and effective one-step restoring method for blurry face images. In the last decades, many blind deblurring algorithms have been proposed to restore latent sharp images. However, these algorithms run slowly because of involving two steps: kernel estimation and following non-blind deconvolution or latent image estimation. Also they cannot handle face images in small size. O...
متن کاملDeblurring Face Images with Exemplars
The human face is one of the most interesting subjects involved in numerous applications. Significant progress has been made towards the image deblurring problem, however, existing generic deblurring methods are not able to achieve satisfying results on blurry face images. The success of the state-of-the-art image deblurring methods stems mainly from implicit or explicit restoration of salient ...
متن کاملLearning a Discriminative Prior for Blind Image Deblurring
We present an effective blind image deblurring method based on a data-driven discriminative prior. Our work is motivated by the fact that a good image prior should favor clear images over blurred images. In this work, we formulate the image prior as a binary classifier which can be achieved by a deep convolutional neural network (CNN). The learned prior is able to distinguish whether an input i...
متن کاملEfficient Face Image Deblurring via Robust Face Salient Landmark Detection
Recent years have witnessed great progress in image deblurring. However, as an important application case, the deblurring of face images has not been well studied. Most existing face deblurring methods rely on exemplar set construction and candidate matching, which not only cost much computation time but also are vulnerable to possible complex or exaggerated face variations. To address the afor...
متن کاملImpact of multi-focused images on recognition of soft biometric traits
In video surveillance semantic traits estimation as gender and age has always been debated topic because of the uncontrolled environment: while light or pose variations have been largely studied, defocused images are still rarely investigated. Recently the emergence of new technologies, as plenoptic cameras, yields to deal with these problems analyzing multi-focus images. Thanks to a microlens ...
متن کامل